What is ‘ethical AI’ and how can companies achieve it?

Dennis Hirsch, The Ohio State University and Piers Norris Turner, The Ohio State University

The rush to deploy powerful new generative AI technologies, such as ChatGPT, has raised alarms about potential harm and misuse. The law’s glacial response to such threats has prompted demands that the companies developing these technologies implement AI “ethically.”

But what, exactly, does that mean?

The straightforward answer would be to align a business’s operations with one or more of the dozens of sets of AI ethics principles that governments, multistakeholder groups and academics have produced. But that is easier said than done.

We and our colleagues spent two years interviewing and surveying AI ethics professionals across a range of sectors to try to understand how they sought to achieve ethical AI – and what they might be missing. We learned that pursuing AI ethics on the ground is less about mapping ethical principles onto corporate actions than it is about implementing management structures and processes that enable an organization to spot and mitigate threats.

This is likely to be disappointing news for organizations looking for unambiguous guidance that avoids gray areas, and for consumers hoping for clear and protective standards. But it points to a better understanding of how companies can pursue ethical AI.

Grappling with ethical uncertainties

Our study, which is the basis for a forthcoming book, centered on those responsible for managing AI ethics issues at major companies that use AI. From late 2017 to early 2019, we interviewed 23 such managers. Their titles ranged from privacy officer and privacy counsel to one that was new at the time but increasingly common today: data ethics officer. Our conversations with these AI ethics managers produced four main takeaways.

First, along with its many benefits, business use of AI poses substantial risks, and the companies know it. AI ethics managers expressed concerns about privacy, manipulation, bias, opacity, inequality and labor displacement. In one well-known example, Amazon developed an AI tool to sort résumés and trained it to find candidates similar to those it had hired in the past. Male dominance in the tech industry meant that most of Amazon’s employees were men. The tool accordingly learned to reject female candidates. Unable to fix the problem, Amazon ultimately had to scrap the project.

Generative AI raises additional worries about misinformation and hate speech at large scale and misappropriation of intellectual property.

Second, companies that pursue ethical AI do so largely for strategic reasons. They want to sustain trust among customers, business partners and employees. And they want to preempt, or prepare for, emerging regulations. The Facebook-Cambridge Analytica scandal, in which Cambridge Analytica used Facebook user data, shared without consent, to infer the users’ psychological types and target them with manipulative political ads, showed that the unethical use of advanced analytics can eviscerate a company’s reputation or even, as in the case of Cambridge Analytica itself, bring it down. The companies we spoke to wanted instead to be viewed as responsible stewards of people’s data.

The challenge that AI ethics managers faced was figuring out how best to achieve “ethical AI.” They looked first to AI ethics principles, particularly those rooted in bioethics or human rights principles, but found them insufficient. It was not just that there are many competing sets of principles. It was that justice, fairness, beneficence, autonomy and other such principles are contested and subject to interpretation and can conflict with one another.

This led to our third takeaway: Managers needed more than high-level AI principles to decide what to do in specific situations. One AI ethics manager described trying to translate human rights principles into a set of questions that developers could ask themselves to produce more ethical AI software systems. “We stopped after 34 pages of questions,” the manager said.

Fourth, professionals grappling with ethical uncertainties turned to organizational structures and procedures to arrive at judgments about what to do. Some of these were clearly inadequate. But others, while still largely in development, were more helpful, such as:

  • Hiring an AI ethics officer to build and oversee the program.
  • Establishing an internal AI ethics committee to weigh and decide hard issues.
  • Crafting data ethics checklists and requiring front-line data scientists to fill them out.
  • Reaching out to academics, former regulators and advocates for alternative perspectives.
  • Conducting algorithmic impact assessments of the type already in use in environmental and privacy governance.

Ethics as responsible decision-making

The key idea that emerged from our study is this: Companies seeking to use AI ethically should not expect to discover a simple set of principles that delivers correct answers from an all-knowing, God’s-eye perspective. Instead, they should focus on the very human task of trying to make responsible decisions in a world of finite understanding and changing circumstances, even if some decisions end up being imperfect.

In the absence of explicit legal requirements, companies, like individuals, can only do their best to make themselves aware of how AI affects people and the environment and to stay abreast of public concerns and the latest research and expert ideas. They can also seek input from a large and diverse set of stakeholders and seriously engage with high-level ethical principles.

This simple idea changes the conversation in important ways. It encourages AI ethics professionals to focus their energies less on identifying and applying AI principles – though they remain part of the story – and more on adopting decision-making structures and processes to ensure that they consider the impacts, viewpoints and public expectations that should inform their business decisions.

Man in a blue suit is seated at a desk speaking into a microphone with people seated behind him.

Ultimately, we believe laws and regulations will need to provide substantive benchmarks for organizations to aim for. But the structures and processes of responsible decision-making are a place to start and should, over time, help to build the knowledge needed to craft protective and workable substantive legal standards.

Indeed, the emerging law and policy of AI focuses on process. New York City passed a law requiring companies to audit their AI systems for harmful bias before using these systems to make hiring decisions. Members of Congress have introduced bills that would require businesses to conduct algorithmic impact assessments before using AI for lending, employment, insurance and other such consequential decisions. These laws emphasize processes that address in advance AI’s many threats.

Some of the developers of generative AI have taken a very different approach. Sam Altman, the CEO of OpenAI, initially explained that, in releasing ChatGPT to the public, the company sought to give the chatbot “enough exposure to the real world that you find some of the misuse cases you wouldn’t have thought of so that you can build better tools.” To us, that is not responsible AI. It is treating human beings as guinea pigs in a risky experiment.

Altman’s call at a May 2023 Senate hearing for government regulation of AI shows greater awareness of the problem. But we believe he goes too far in shifting to government the responsibilities that the developers of generative AI must also bear. Maintaining public trust, and avoiding harm to society, will require companies more fully to face up to their responsibilities.

Dennis Hirsch, Professor of Law and Computer Science; Director, Program on Data and Governance; core faculty TDAI, The Ohio State University and Piers Norris Turner, Associate Professor of Philosophy & PPE Coordinator; Director, Center for Ethics and Human Values, The Ohio State University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Conversation

Tu opinión enriquece este artículo:

NFL 2026: por qué el fútbol americano (el deporte y sus valores) importa más que nunca (y por qué el show de medio tiempo es lo de menos)

(Por Maqueda, Taylor, Ortega y Maurizio) En 2026, cuando el Super Bowl es también un fenómeno de entretenimiento global, conviene defender una idea simple y casi contracultural: lo más relevante del fútbol americano no es lo que pasa en el escenario del entretiempo, sino lo que pasa en el campo… y lo que ese campo ha enseñado durante más de un siglo sobre la cultura competitiva de Estados Unidos. 

Lectura de alto valor estratégico, 4 minutos de lectura, material idea para compartir)

Adrenalina y estrés: un cóctel peligroso (¿qué tipo de personalidad y qué tipo de organización fomentan este común flagelo?)

(Por la Dra. Sonia Abadi, una cocreación para la prestigiosa comunidad Beyond en colaboración con Infonegocios Miami) Creemos que la adrenalina es energía, excitación, motivación. En realidad, la adrenalina es la hormona de la lucha y, por lo tanto, una respuesta física ante situaciones que producen miedo. 

(Lectura de alto valor estratégico, 4 minutos de lectura, material idea para compartir)

Super Bowl LIX: Bad Bunny cayó en audiencias en TV y no rompió los récords de Usher y Kendrick Lamar, ni MJ (¿por qué medios dijeron lo contrario?)

(Por Maqueda-Maurizio-Taylor) Los datos finales de Nielsen para el Halftime Show del Super Bowl LIX son una cápsula de verdad en un mar de hipérbole digital. 128.2 millones de espectadores. No es un récord. Es, de hecho, una caída de 5.3 millones respecto al pico de 133.5 millones de 2025. 

(Lectura de alto valor estratégico, 4 minutos de lectura, material ideal para compartir)

El "Billionaire Bunker" no es una moda, es una estrategia geopolítica de élite (el manual no escrito al que se suscribe Zuckerberg)

(Por Taylor desde Silicon Beach, edición Maurizio) Cuando Mark Zuckerberg compra una propiedad en Indian Creek Village —esa isla privada de 41 mansiones apodada "Billionaire Bunker"— no está comprando una casa. Está adquiriendo una opción estratégica en el tablero geopolítico del capital global. Y con él, se completa una trinidad sagrada: Bezos (Amazon), Page (Google), Zuckerberg (Meta). Los tres fundadores del ecosistema digital que define el siglo XXI ahora tienen su búnker en el mismo kilómetro cuadrado de Florida.

(Lectura de valor, 4 minutos de lectura, material idea para compartir)

Kylie Jenner y SKIMS: por qué esta campaña no es solo moda (una muestra más de la compleja era de las colaboraciones, phigitalidad y ecosistemas de marca)

(Por Vera- Rotmistrovsky y Maurizio) Esta colaboración, aparentemente sencilla, es en realidad un caso de estudio en estrategia de expansión de categorías, uso inteligente de celebridades y –sobre todo– una lección magistral en cómo conectar lo físico y lo digital en la mente del consumidor.

(Lectura de valor, 4 minutos de lectura, material idea para compartir)

Inter Miami CF se corona como el club más valioso de la MLS (valuación histórica de U$$ 1.450 millones)

(Por ORTEGA) Inter Miami CF no solo hace historia en la cancha. Según Sportico, medio especializado en valuaciones deportivas a nivel global, la franquicia de Florida se consolida como el club más valioso de la Major League Soccer (MLS), con una valoración récord de USD$ 1.450 millones, marcando un crecimiento interanual del 22%, el más alto de la liga.

(Lectura de valor, 3 minutos de lectura, material idea para compartir)

El gran error estratégico que la mayoría de marcas comenten (y que otras como Ferrari, Adidas, Mercedes y LVMH, corrigieron)

(Por Maurizio y Maqueda) Entre 2015 y 2020, una generación de marketineros —sobreestimulados por la fiebre de las métricas digitales— cometió uno de los errores estratégicos más costosos de la historia del mundo de los negocios: declarar muerto el marketing experiencial y físico. 

(Lectura de valor, 4 minutos de lectura, material idea para compartir)

Rhode Snow Club en Big Sky y Ulta Mate Retreat en Upstate New York (ejemplos claros de la supremacía del ecosistema de experiencias de marca)

(Por Maqueda, Otero y Maurizio) Rhode, Rare Beauty y otras firmas de alto perfil están mostrando que el verdadero poder ya no reside en un único canal, sino en un “head of culture” que orquesta un cruce de acciones: activaciones, celebri­ties, retail, contenido nativo, y experiencias inmersivas que viven en redes, buscadores y tiendas.

(Lectura de valor, 4 minutos de lectura, material idea para compartir)

Louis Vuitton en la Fórmula 1 2026: la solidez de un encuentro entre lujo, velocidad y expansión de experiencias (¿qué nos enseña?)

(Por Marcelo Maurizio y Juan Maqueda) La Fórmula 1 (F1) no es solo un deporte; es un fenómeno cultural que ha captado la atención de millones en todo el mundo. Con un número creciente de carreras y una narrativa cautivadora impulsada por la serie de Netflix "Fórmula 1: Drive to Survive", este deporte ha logrado trascender su naturaleza competitiva para convertirse en un espectáculo multidimensional. 

(Lectura de valor, 4 minutos de lectura, material idea para compartir)